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PREFACE 

This is the final report on the Low-Altitude Satellite 
Interaction Problem Investigation Study. The study 
was conducted by the Astro-Electronics Division of 
RCA for the National Aeronautics and Space Admin- 
istration under Contract No. NAS5-11016. Work on 
the study was accomplished during the period from 
March 31, 1967 through January 31, 1968. 
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SUMMARY 

Many important phenomena that affect the structure of the upper atmosphere occur in 
the altitude range of 100 to 150 kilometers. The need for aeronomic measurements 
at this altitude is well known. A rocket o r  satellite vehicle of ordinary size (on the 
order of meters) moving through this altitude range produces an interaction with the 
gas in the vicinity of the vehicle. This interaction cannot be described by either the 
free-molecular or continuum-fluid mechanical theory, and is generally considered to 
be in the "transition" regime. In order to enable interpretation of measurements 
made on o r  near the vehicle surface, it is necessary to have a theoretical means of 
determining how the state of the gas deviates from its ambient condition during such 
an interaction. The objective of the present study is to provide a means for computing 
the effect of the vehicle on the gas in its vicinity for flows in the transition regime, 
and to obtain preliminary information on the trends and magnitudes of the parameters 
affecting data interpretation. 

This report  describes two specific methods for calculating the properties of these 
fluid flow fields. Also presented are the results of such calculations for certain 
ranges of flow parameters useful in illustrating the effect of the resulting flow field 
on fluid measurements performed during the flight of aeronomical vehicles. The 
main effort in the calculations ranges over Knudsen numbers* from 0 . 3  to 300 and 
vehicle velocities in excess of three times the thermal speed of the gas (speed ratio 
> 3 ). The specific cases treated are the two-dimensional and axi-symmetric flow 
field fo r  a binary gas mixture. 

A computer program based on a Monte Carlo procedure developed by G .  A .  Bird** 
and extended to gas mixtures was  employed to compute the flow field around a sphere 
and around an infinite cylinder with axis transverse to the flow. The program is 
operational over a wide range of parameters, including a range of Knudsen numbers 
from about 0 . 1  to 100. I t  is susceptible to further generalization and extension. , 

Part of the study was  devoted to the performance of perturbation calculations for 
large Knudsen numbers, using a linearized and modeled collision term. These cal- 
culations were intended primarily for the determination of trends and for additional 
checks on the Monte Carlo procedure. 

*Ratio of mean free path to body size. 
**Professor of Aeronautics, University of Sydney, Sydney, Australia. 
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The results show that there is a significant increase in the flux to the body in the 
vicinity of the stagnation point. The total stagnation-point flux in the Knudsen- 
number range of i to 10 is from 8 percent to 65 percent above the free-stream value. 
The perturbation theory suggests that the first measurable deviations from free- 
molecular theory may occur at Knudsen numbers in excess of 100, and thus at alti- 
tudes above 150 kilometers. In addition to the increase in total flux, there is a very 
pronounced enrichment of the heavy specie ( for  a binary gas mixture) in the vicinity 
of the stagnation point. This enrichment, if not included in  the data-reduction proc- 
ess ,  could lead to a gross overestimate of the relative abundance of heavy species in 
the ambient atmosphere. 

The present study has demonstratedthe feasibility of determining the effects of a 
moving vehicle on the gas in its vicinity (in the transition regime ), and has shown 
these effects to  be an important part  of the data interpretation problem. Much work 
remains to be done in  increasing the sophistication of the model problem and extending 
it into more realistic geometries. Additional computations are needed in order to 
determine more fully the effects of the relevant parameters. Increased sophistica- 
tion of the program and improved understanding of the results should provide 
guidelines useful in the design of aeronomy experiments and the necessary tools for 
the analysis o r  interpretation of flight data. 
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SECTION I 

INTRODUCTION 

For more than twenty years, ballistic rocket flights have been gathering data on the 
upper atmosphere at altitudes above 25 or 30 kilometers, Such flights have ranged 
to altitudes of 300 kilometers and more. High-level balloons have also contributed 
to knowledge of the properties of the upper atmosphere. Similarly, with the advent 
of orbital flight, measurements have been made on the properties of the residual 
atmosphere at very high altitudes, generally above 300 kilometers. Thus, in varying 
degrees of detail, measurements have been made over the entire altitude range of the 
atmosphere. These measurements have led to a greater understanding of the physics 
of near-earth space. Among the most significant contributions are the proof of the 
existence of the Van Allen belt and data on the gross morphology of the magnetosphere. 

The wealth of information that has  been gathered on the atmosphere a s  a whole pro- 
duces a reasonably coherent picture of the atmosphere; however, the need for more 
information on certain discrete altitude belts is felt to be quite critical. One such 
belt ranges from about 90 kilometers to as high a s  200 kilometers, but the 30- 
kilometer spread on either side of the 120-kilometer level is of special interest. 

Below 90 kilometers, the atmosphere is essentially hydrostatic and is homogeneously 
mixed. 
the equilibrium values of state parameters, a r e  reasonably well understood. Although 
many secondary features in the regions just below 90 kilometers are obscure, the 
existing theoretical framework covers the grosser features quite well. For example, 
the details of the mechanism of the formation of the D-layer a r e  still rather obscure, 
but the reasons for the general behavior of the mesospheric temperature profile 
Seems to be reasonably well  understood. 

For this  region, the mechanisms that control the overall behavior, such as 

Well above 90 kilometers, a diffusive rather than a hydrostatic equilibrium is known 
to prevail. Here, the word equilibrium must be understood to connote not a true 
equilibrium but rather mean values within an as yet poorly understood dynamical 
framework. The equilibrium of the gross values of the state parameters (such a s  
composition profile) are brought about by countervailing diffusion processes The 
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intervening altitude belt, in which the change is from a substantially hydrostatic to an 
essentially diffusive equilibrium, is understood, but in somewhat less simple terms. 
Such a region can be thought of as a bounding region, the data from which can be used 
a s  a boundary condition for the altitude region above. The lack of knowledge of these 
so-called boundary conditions contributes in some measure to the lapses in under- 
standing of the equilibrium state in the upper altitudes (greater than 200 kilometers). 
Among the physical variables comprising these boundary conditions a r e  the tempera- 
ture, the partial densities, and partial fluxes. For example, some of the constituents 
found in the higher altitudes a r e  known to be generated at lower altitudes as well as in  
the altitude interval i n  question, and to be diffused upwards. Thus, the altitude belt from 
90 to 150 kilometers is very important for the aeronomist. A s  more data are gathered 
from the higher altitudes, knowledge of the state of this  region is of increasing 
significance. 

Par t  of the data from this altitude interval has been obtained by instrument packages 
on rockets flown through the interval. However, the need for a synoptic view, which 
really cannot be obtained by rocket flights, is taking on greater importance. 
quirement suggests than an instrument package be carried on a satellite whose orbit, 
at least in part, traverses the altitude region of interest. 

This re- 

The flow fields that develop in the vicinity of a moving vehicle cause the values of state 
variables characterizing the atmosphere at the precise instrument position on the 
vehicle to be different from the values of the same variables for the undisturbed ambi- 
ent. The measurements of the state variables can be referred to their free-stream 
o r  ambient values only by knowing the effect of the flow field on these variables in the 
vicinity of the instrument. The determination of these flow fields, for useful ranges 
of parameters, constitutes the effort described in this report, 

For the altitude belt in question, a relatively unique flow regime develops. This is 
the so-called transitional flow regime; it is most appropriately characterized by the 
ratio of the mean free path between collisions of gas particles to the typical body 
dimension, This parameter, referred to as the Knudsen number (designated Kn), has  
a value on the order of unity for the altitude region of interest. 

Two methods of solution a r e  examined in this report: (1) A Monte Carlo procedure 
and (2) a perturbation procedure. A great portion of the effort during this program 
involved a determination of the suitability of these two methods for solving the appro- 
priate flow problem. In the case of the perturbation procedure, the basic theory was 
reasonably well understood. However, its applicability to the evaluation of so-called 
point parameters, * such a s  local number flux, was  by no means clear. An investiga- 
tion was conducted to determine the utility of this procedure for such calculations. 
In the case of the Monte Carlo procedure, 

*As opposed to integral parameters, such 

the same question was at issue; namely, 

as drag. 
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was this a sufficiently useful method to solve, with reasonable accuracy, the flow 
problem at hand. 

The results of the work have clearly shown that the latter methodis very useful. Ap- 
propriate quantities a re  calculable f o r  ranges of parameters (such as shape, Knudsen 
number, and Mach number) deemed useful for measurement interpretation. Typical 
results of these calculations are presented in this report. 



SECTION II 

THEORETICAL FOUNDATION 

r 
From the most fundamental point of view, the study of fluid motions is an aspect of 
the so-called many-body problem. Here, a group of N molecules may be represented 
by an ensemble of dynamically similar systems. The basic starting point in the analy- 
sis of such a problem is the Liouville theorem, which provides the fundamental kinetic 
equation. However, because it includes all higher order collisions, this approach is 
somewhat more general than is required for motions in gases and, in particular, for 
motions in so-called rarefied gases. The level of complexity required is provided by 
the so-called one-particle distribution function. The Boltzmann equation, which can be 
obtained from the Liouville Theorem, can provide the appropriate distribution function 
as a solution with an adequate level of information. The distribution function is the 
fundamental physical variable involved. It describes the distribution in velocity and 
configuration space of the gas molecules of the fluid system. Its velocity moments 
provide the flow variables desired. 

From a simple physical point of view, the collisions, o r  more properly the encounters, 
between the molecules constituting the gas are the fundamental dynamical process. 
This is so because there a re  no external forces (other than the presence of solid 
boundaries) imposed on the fluid. The collisions "connect" one part of the gas with 
any other part .  The presence of a body, and the particular boundary conditions it 
provides, can influence the flow field in  its vicinity through such collisions. 

Since the object of the present investigation is a so-called rarefied gas flow, the 
Boltzmann equation or  its modeled equivalent will constitute an appropriate starting 
point of the analysis. 

In terms of the average mean free path between collisions, gaseous flow fields can be 
divided into three general categories. For mean free paths very much shorter than 
any typical dimension of the body, the so-called continuum regime applies. 
on the other hand, the mean free path is very much larger than any other critical 
dimension, the so-called free flow analysis applies. Obviously, here, collisions be- 
tween gas particles play only a vestigal part in their dynamics. Lastly, when the 
length of the mean free path is of the order of a typical body dimension, the transitional 
flow regime is applicable. This latter regime is the flow regime of concern in this 
report . 

When, 
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Fundamentally, the Boltzmann equation governs all three regions, however, the 
particular methods of solution a re  profoundly affected by the size of the Knudsen num- 
ber. For the transitional flow regime, the Knudsen number is of order unity. 

The Boltzmann equation for a gas mixture is given as: 

where th 
f a  (r., v. t) is the distribution function of the i species, 
1 1 1  

t is the time, 

v is the instantaneous velocity, 
i 

r is the position coordinate, 
i 

(') is the superscript prime (implies post-collision quantities) 

k.. is the encounter variable, and 
1J 

F. is the external force on the ith species. 
1 

The solution of Equation 1 describes the temporal and spatial evolution of the distribu- 
tion function of the ith gas component. For a j- component gas mixture, there are j 
such equations which a re  coupled by the so-called collision term on the right-hand 
side. 
a particle in a region of configuration space between $ and ? + dr  and simultaneously 
in a region of velocity space between ?and ? + s, in a time interval between t and 
t + dt. It can also be defined a s  the number of particles found in the above intervals 
of time, configuration and velocity space. Such distinctions in definition arise as a 
result of the particular choice of normalization of the function fi. 

The product f i  (ri, vi t) dr  dv dt can be interpreted as the probability of finding, 
2 

Despite the complexity of Equation 1 as given (it is a non-linear, partial-differential 
integral equation), it lacks generality on two grounds. First, it ignores other than 
binary collisions; that is, molecular encounters in which more than two molecules are 
involved. As pointed out above, this is of no practical importance in  low-density gases. 
The second lapse from generality is that it ignores the internal structure of the gas 
molecules. In gases for which the temperature is great enough so that a collision can 
change the internal energy configuration of a molecule, explicit recognition must be 
taken of this in the collision term. Collisions that change the internal energy states 
of gas molecules are referred to as inelastic collisions. These collisions can leave 
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one or  both colliding molecules in an excited internal state. Some of the kinetic energy 
of translation exchanged between two particles, can in this case, be channeled into 
exciting (or de-exciting) an internal state. In such a situation, the distribution func- 
tion of the ith species f i  takes on a more restricted meaning. Here f i  would have to 
become fa where the index i would refer to the particular component of the mixture 
and the 1 to the lth internal state of the ith species. 

Formally, the equation would not appear different but the encounter variable kij would 
now acquire a more complex meaning. Under these circumstances, the encounter 
variable must describe the dynamics of a collision in which a species i in an internal 
state 1 collides with a species k in a state m and results in an internal state 1' of i and 
m' of k. The encounter variable for such collisions would likely assume a complex 
tensor character due to the fact that the results of collisions depend not only on rela- 
tive distance but also on the relative angular orientation of the colliding particles. 
Practical effects, such as the reduction of heat transfer, occur when molecules 
possess internal states that can become excited. This second lack of generality can 
affect, in some respects, the problem at hand. In particular, such practical effects 
can occur when the gas molecules collide with the surface of the body. However, im- 
portant information can be obtained without this level of complexity and it will not 
affect the particular methods of analysis applied herein. 

Historically, the Boltzmann equation resisted useful solutions for many years. Work 
began in 1859 with the discovery by Maxwell of the form of the equilibriumdistribution. 
Boltzmann's work in the1870's resulted in his famous H-Theorem. In 1912, Hilbert 
first began productive mathematical approaches to solutions for the distribution 
function for non-uniform, non-equilibrium situations. By 1917, following Hilbert, 
both Chapman and Enskog had published the first  useful forms for approximate solu- 
tions to the Boltzmann equation. These methods a re  fundamentally similar. So useful 
did this latter method prove to be that for many years no further advance was made on 
the general solutions to the equation. In 1949, H. Grad published his 13-moment 
method, which allowed for solutions to various problems of a type not amenable to the 
method of Chapman and Enskog. 

Since 1950, considerable additional progress has been made in useful formulations 
and solutions of the basic kinetic problem. Both of the two approaches employed in 
this report for solutions of the basic kinetic problem have been generated since then. 
One such innovation, called the Krook model, consists basically of a drastic simplifi- 
cation of the collision term (right-hand side of Equation 1). 
consists of a perturbation procedure applied to a linearized form of this Krook equa- 
tion. The other approach models the effects of encounters on the flow by the use of 
a small representative group of particles. In this modelling, the effects of the 
collisional dynamics of about 1000 particles a re  tracked in a region of space surround- 
ing the body and the results a r e  imputed to the gas as a whole. This approach, since 
it involves a Monte Carlo method, is referred to as the Monte Carlo procedure. 

The analysis herein 
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SECTION 111 

THE M O N T E  C A R L O  PROCEDURE 

i 
"Monte Carlo" is a term referring to techniques utilizing random numbers to generate 
solutions from which information is deduced statistically. Because of its inherently 
statistical nature, kinetic theory is especially well suited to Monte Carlo treatment. 
A number of problems in kinetic theory have been attacked by variants of Monte Carlo 
techniques. The method has been applied to the determination of the equation of 
state(1), to a number of internal-flow, free molecular problems (2$ 3), to neutron 
transport(4), and to other analyses. Only recently, have attempts been made to apply 
the method to rarefied flow problems where the Knudsen number can be of order 
unity. (5, 6379 8) 

Even in terms of this relative1 restricted area of applications, there are  many dif- 
ferent Monte Carlo techniques 6)  . 
The Monte Carlo approach ranges from being a strictly mathematical technique for 
evaluating the complicated multi-dimensional Boltzmann collision integral, to a 
complete simulation of a number of molecules with randomness introduced only in the 
initial conditions. In general, however, the methods can be divided into two classes. 
In the first class, a distribution function is first assumed and a succession of test 
particles is sent to interact with this distribution. The process is then repeated with 
the modified distribution. These methods are referred to as the "Test particle" 
methods. In the second class, a large number of particles a re  followed simultaneously, 
yielding to some degree a direct simulation of the processes taking place in a gas. 
This class of methods is referred to as "direct simulation. I '  

In the 'Ttest particle'' methods, the relationship between the method and the Boltzmann 
equation can be shown readily to be an iteration process on the distribution function. 
The collision integral is evaluated at each stage with the integrand formed from products 
of the previous and current iterates of the distribution function. The method can, in 
some sense, be considered an integral iteration technique; therefore, any questions as 
to convergence of the iteration scheme will apply as well to the Monte Carlo technique. 

i 
i 

In one I'  direct simulation" method, random numbers are introduced only to establish 
the initial conditions. The remainder of the trajectories are considered determin- 
istically, with only our lack of knowledge necessitating statistics. This direct method 
simulates allowable microscopic states of the gas, o r  in terms of kinetic theory, 
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members of the ensemble. 
initial conditions will therefore correspond to the distribution function appearing in the 
Bolzmann equation. If only binary collisions are allowed, the assumptions will be 
identical to those used in the Boltzmann equation. Generally speaking, however, such 
complete simulation is not feasible for problems of any complexity on even the biggest 
and fastest computer. One is forced, therefore, to lower the degree of simulation in 
a number of ways. However, as  long as the samples used for the final statistical 
averaging are members of an ensemble that adequately models the ensemble of the true 
states of the gas, the solution is equivalent to that obtainable from the Boltzmann 
equation. 

The distribution among the states arising from the different 

A recent development in the use of the "direct simulation'' type of Monte Carlo technique 
by G. A.  Bird(6, 7, has allowed the method to be applied successfully to problems of 
external flow over bodies ranging in size from much smaller than the mean free path 
to about ten times larger than the mean free path. The method overcomes the storage- 
limitation difficulties of the "direct simulation" technique by considering the N particles 
chosen for study not as the whole system, but only as  a sample of the much larger 
number. Because it is to be a representative sample from the particles of the real 
system, the mean free path becomes uncoupled from the number N actually used on the 
computation and depends upon the collisions in the real gas. For steady-state flow 
problems, where there is constant flux of new particles entering the volume of interest, 
sampling over initial conditions can be avoided by averaging over a time interval once 
steady-state condition is reached. This technique greatly reduces the computational 
time. 

Bird's method, in terms of its application to the problem at hand, is described more 
fully in  succeeding sections. In this section, its general properties are given only in  
sufficient detail to make plausible its use as  a simulation of problems describable by 
the Boltzmann equation. 

The physical volume of interest (a finite volume of gas surrounding the body) is divided 
into a number of cells. These cells are  populated with a certain number of particles 
in random positions, and with velocities chosen at random from a prescribed initial 
distribution. The particles are then allowed to move, and collisions are computed in 
each cell. The actual positions of the sample particles are  disregarded since they 
merely represent the distribution of the much larger number of particles and since 
all positions within the cell are equally probable. Under these circumstances, any pair 
is available for collision independently of the "actual" locations of the two particles 
within the cell. The probability of collision is made proportional to the number of the 
particles in a given cell, their relative velocity and cross-section. 

In this respect, the above method simulates the Boltzmann equation. Higher order col- 
lisions (i.e., three particles o r  more) are uncorrelated, and therefore the distribution 
of these ensemble members, each of which a re  samples of Nparticles out of a much 
larger number M, models the distribution of ensemble members, each composed of 
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M particles , except for the normalization factors. In addition, the method allows 
sampling of ensemble members in steady-state problems to be done at time intervals 
sufficiently long so  that the streaming motion substantially replaces all particles in 
each cell. This longer sampling effectively produces a new "uncorrelated" ensemble 
member; therefore, the computing time required to obtain reasonable accuracy is 
reduced. 

A, SPECIFIC APPLICATION OF BIRD'S MONTE CARLO TECHNIQUE 

In the technique under discussion, Bird's method (7), is extended to binary 
gas mixtures and modified to eliminate certain programming er rors .  For con- 
venience, an outline of the basic description of Bird's method for single-specie, 
two-dimensional flow is given below. "Two-dimensional" means either no variation 
along one Cartesian coordinate, o r  axial symmetry. 

The approach is to conduct numerical experiments with a model gas on the computer. 
The real  gas is simulated by the order of a thousand rigid-sphere molecules which may 
be thought of as a representative sample of the many billions of molecules in the cor- 
responding real gas. The positions and velocity components of the simulated molecules 
a re  stored in the computer, and typical collisions a re  computed among them as  a time 
parameter is advanced. The computation of collisions starts at zero time, the mole- 
cules having been se t  up as a uniform stream at the required free-stream Mach number, 
with the thermal motion superposed. The body is inserted iilto this flow at zero time 
and the desired steady flow is obtained as the large time solution of the resulting un- 
steady flow. 

The free-stream flow is in the positive x direction. The simulated region is bounded 
by the x axis as a line of symmetry and by the upstream, outer, and downstream 
boundaries. These boundaries must be set  sufficiently far from the body to eliminate 
interference. The simulated region is divided into a number of cells that a re  suf- 
ficiently small for  the change in flow properties across the cell to be small. 

Figure la  shows a side view (in a plane containing the direction of flow) of the typical 
cell structure for either a cylinder o r  a sphere. 
plane is perpendicular to the axis of the cylinder. 
in a plane perpendicular to the direction of flow. 
cells in the direction along the cylinder axis need not be specified, because for an 
infinite cylinder, all properties are invariant in that direction. (This length is denoted 
by P in Figure lb . )  For the sphere,the cells a re  annular regions; a 90-degree segment 
of their cross-section, in a plane perpendicular to the direction of flow, is shown in 
Figure IC. In the flow around a sphere, axial symmetry exists around an axis along 
the direction of flow; therefore, the angular positions within the cells need not be 
considered. 

For the cylinder, the side-view 

For the cylinder, the length of the 
Figure l b  shows the cross-section . 
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L A  

a )  SIDEVIEW - CYLINDER OR SPHERE 
(FLOW DIRECTION ( X )  IS FROM LEFT TO RIGHT) 

I 5 5  

4 3  

I 108 I 
I IO0 I 

b )  SECTION A - A  FOR CYLINDER C )  SECTION A - A  FOR SPHERE (CELLS EXTEND 

(p IS AN ARBITRARY LENGTH ALONG 
INFINITE CYLINDER) 

360° ALTHOUGH ONLY 90° I S  SHOWN) 

Figure 1. Geometry and Typical Numbering of Cells for Flow Around 
Cylinders and Spheres 
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In general, when the flow is either two-dimensional or mi-symmetric, only two posi- 
tion coordinates need be stored for each simulated molecule. 
components a re  also stored and a record is kept of the molecules within each cell. 

The three velocity 

The first step is to generate the initial, or  zero time, configuration of molecules. 
The molecules a re  distributed uniformly over the simulated region and the velocity 
components a re  appropriate for a gas in Maxwellian equilibrium and moving at the 
required Mach number. 

The body is then inserted into the flow and the molecules are allowed to  move and 
collide among themselves. The two processes a re  uncoupled by computing collisions 
appropriate for a time interval A t ,  and then moving the molecules through distances 
appropriate for A tm and the instantaneous velocities of the molecules, 
produced in the molecular paths by this approximation is small as long as  A t ,  is small 
compared with the mean time between collisions, 

The distortion 

Since the change in flow properties over the width of each cell is small, the molecules 
in a cell at any instant may be regarded as a sample of the molecules at the location of 
the cell. The relative location of the various molecules within the cell can then be 
disregarded and the collision probability of a particular pair of molecules within the 
cell depends only on their relative velocity. A pair of molecules is chosen at random 
from those within the cell under consideration; the pair is retained or rejected in such 
a way that the probability of retention is proportional to the relative velocity vr. When 
a pair is retained, a typical collision is computed between the two molecules and the 
new velocity components are stored in place of the old ones, The random selection of 
impact parameters is particularly simple for  rigid-sphere molecules since all direc- 
tions for the new relative velocity vector are equally probable. For each collision, 
the time counter for this cell is advanced by 

where 

N 

0 

n 

v is the relative velocity. 

is the actual number of molecules in the cell, 

is the particle diameter used in  the collision cross-section, 

is the number density of molecules in the cell, and 

C 

R 

Collisions are computed in the cell until the time counter has advanced through A h .  
When this procedure has been carried out for every cell, the overall time is advanced 
through A h  and the molecules are  moved through appropriate distances. 
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The set  of molecules in each cell will change as the molecules are moved and ap- 
propriate conditions must be applied at the boundaries of the region being simulated. 
The upstream boundary normal to the free-stream direction is treated a s  a source 
of molecules with velocity components representative of the downstream moving 
molecules in the equilibrium free stream. Any molecule which moves back up- 
stream across this boundary is regarded as being "lost" and is removed from the 
store. 
surface in two-dimensional flows. 
difficulties. The procedure that has been developed usually introduces only a small 
reflected disturbance and becomes exact in free-molecule flow. A molecule is regarded 
as 'lost" i f  it moves outward across the boundary, but a molecule that moves inward 
from the boundary during the time interval Atm, through a distance greater than its 
original distance from the boundary, is located at the new position and a similar 
molecule is added in the original position. The latter part of this procedure is only 
applied to those molecules with properties similar to the free-stream molecules. An 
alternative procedure is to regard the outer boundary as a specularly reflecting surface. 
While this would result in a larger reflected disturbance, it does permit a simple 
physical interpretation. Both boundary conditions produce disturbances only in a limited 
region, and care is taken to exclude the body from that region. 

The plane of symmetry along the x axis is regarded as  a specularly reflecting 
The outer and rear  surfaces present greater 

Interactions with the body are also computed. 
reflecting surface with an accommodation coefficient of unity, although any other 
interaction model can be easily substituted. After a flow has settled down to a steady 
state, the momentum and energy transfer to the surface is recorded and used to compute 
the aerodynamic data. The time required to establish steady flow is usually assumed 
to be close to the time required for the free stream to travel several body dimensions. 
The flow field properties are also sampled in the steady flow. Instantaneous samples 
a re  recorded at appropriate time intervals and these a re  averaged for greater accuracy. 
The time interval for sampling At,  is on the order of the time required for the flow to 
traverse one cell. 

The body is assumed to have a diffusely 

The results become progressively more accurate as the sample size is increased and 
the statistical scatter is reduced. An indication of the order of this scatter is given by 
the normal distribution result; that is, the standard deviation is equal to the reciprocal 
of the square root of the number in the sample. Thus 68.3 percent of the results should 
lie within one standard deviation, 95.5  percent within two deviations, and 99.7  percent 
within three deviations. Successful runs have been made with as few as six simulated 
molecules in each cell; the statistical fluctuations do not appear to induce instabilities 
in the flow. 

The key to the simulation is the procedure. The molecules for a collision pair are  
selected according to the correct probability and then the time parameter is advanced 
by the appropriate amount for  each collision. In this way, an appropriate set  of col- 
lisions is computed for any distribution function of molecular velocities. Apart from 
the boundary conditions, only two approximations are  made. The first is the uncoupling 
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of the molecular collisions and motion; this approximation becomes exact as  A t ,  tends 
to zero. The second is the assumption of uniform properties over the cell; this ap- 
proximation also becomes exact as  the cell size tends to zero. 

The extension to binary gas mixtures is in principle straightforward. It consists pri- 
marily of changing all variables connected with the particles to arrays. The first 
member of the array denotes A particles and the second denotes B particles. The time 
counter is changed to an array that keeps track of AA, AB, and BB collisions separately. 
Although in principle this should be sufficient, the necessity of having a reasonably large 
sample of each specie for meaningful averaging normally precludes the possibility of 
obtaining solutions for large number density ratios between the two species. 
problem is circumvented by always starting with the same number of A and B particles 
and incorporating the density ratio as a factor that accounts for the fact that B par- 
ticles may be a sample of a much larger group than A particles. This factor is in- 
troduced into the collision counting process in such a way that collision probabilities 
a re  in the proper relation to each other for the true density ratio. The standard 
deviations for the two species, however, are based on the actual sample sizes and are  
therefore of the same order. 

This 

B. CRITIQUE AND LIMITATIONS OF MONTE CARLO METHOD 

There is, of course, an irreducible accuracy limitation in the method which can- 
not be lowered by increasing the running time. 
cell size, which because of the computer storage limitations cannot be made arbitarily 
small. It is difficult to place a precise value on the e r ror  arising from finite cell 
size; however, this e r ro r  can be estimated on the basis of the solution obtained. The 
relative e r ro r  wouldnot be expected to exceedifid, where $ is any property of interest, 

@ 
V $  its gradient, and d is a cell length dimension. A certain amount of difficulty may be 
circumvented by choosing the cell sizes so that cells in regions of high gradients a re  
much smaller than in the rest  of the flow field. Such a method has been shown to be 
feasible. 

This limitation arises from the finite 

Another limitation and possible difficulty in the Monte Carlo method arises from the 
finite storage limitation of the computer. Because of this limitation, it is necessary 
to apply boundary conditions on the outer edges of a finite volume, when in  reality 
they should be applied at infinity. To some extent, this problem can be investigated 
experimentally on the computer. The locations of the outer boundaries, and the 
boundary conditions themselves, can be varied to determine where the solution, at 
certain critical regions, becomes invariant to these changes. Such an approach is 
expensive in  terms of computer time; therefore, only a limited amount of investiga- 
tion was performed along these lines. By confining ourselves to high supersonic 
Mach numbers, we have reasonably solid theoretical grounds on which to estimate 
the range of influence of the body on the flow field. 
speed at high Mach numbers of typical molecules compared to the thermal speed, any 

Because of the high convective 
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disturbance is primarily convected downstream, with the lateral influence spreading at 
a rate that is smaller by the ratio of thermal to convective speed. The upstream and 
upper boundary, therefore, can be reasonably placed outside the perceptible influence of 
the body; the boundary conditions should cause no difficulty, as the flow is essentially 
f ree  stream. On the downstream side, we can only guess at the correct boundary con- 
ditions; we can, however, guarantee that those conditions will have a small effect on the 
body by placing the downstream boundary sufficiently far downstream so that the con- 
vective velocity will be supersonic with respect to the body. 

Of course, in using any method that incorporates the concept of random numbers, it is 
very difficult to be certain that no inadvertent bias is introduced in any of the sampling 
processes. A s  with any theory or  experiment, a certain degree of confidence can be 
gained by checking for internal self-consistency and by verifying some simple known 
limits. Both the internal self-consistency and the ability of the method to represent an 
equilibrium gas were tested by running the program with the body removed. Monitoring 
of the number of collisions showed that the collision probabilities were being properly 
applied to yield agreement with the theoretical values of collision frequencies. In ad- 
dition, it was shown that regardless of the initial conditions, the long time behavior 
was one of statistical fluctuations around a mean that was representative of the 
equilibrium state assumed in the free stream. 
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SECTION IV 

CONNECTION OF THE PERTURBATION THEORY 
AND THE GENERAL THEORY 

The fundamental working equation employed for the solutions to the flow problem is an 
amended form of the Boltzmann equation. 
Krook Model* introduces a drastically simplified form for the collision term, which is  
the term in the Boltzmann equation where the real analytical difficulty resides. 
Krook modification of the Boltzmann equation is  generally regarded as the simplest 
approximation that has practical merit. However, it usually requires still further 
simplification before it can be used. The main consequences of assuming the Krook 
equation a re  examined here. 

This modification, often referred to as the 

The 

The form for the collision term in the Krook equation is given as 

To be of use  this term must approximate at least some of the import‘mt features of the 
full collision term. Introdnced by this term, beyond the distribution function f ,  a re  
two variables v 
frequency; fo is  
It has  the form 

and fo. The variable v can be interpreted as an average collision 
a distribution, for which the explicit velocity dependence is given, 

2 

2- T 

n (v - u) 
3/2 k 

m 

f =  
k 

( 2 ~ -  T) m 

0 

where 
v 

k is the Boltzmann constant. 

is the velocity of molecules, and 

It is referred to as the local Maxwellian distribution. The velocity space dependence 
is that of a Maxwellian distribution. However, the component terms consisting of the 
number density n, the mean velocity u, the temperature T, and the mass m of the gas 
particle are defined as functions of position. Such terms are themselves integrals 
over the distribution and so the form of the term is by no means as simple as  it looks. 

* Bhatnager-Gross-Krook Model 
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However, this latter feature is a difficulty that can often be circumvented by lineariza- 
tion when getting down to practical cases. The form for the given distribution function 
fo corresponds to the notion of local thermodynamic equilibrium. Such a distribution 
is the one that would exist for an equilibrium situation at a point; it would be appropriate 
to the number density, mean velocity and temperature at that point. 

The H-Theorem shows that the dynamical tendency of collisions is to restore the equi- 
librium state. Thus any short-lived departure from equilibrium can be "erased" by 
collisions. Any dynamical mechanism (e. g. , insertion of a body into a gas flow and 
the attendant gas-body collisions) applied continuously in time can cause a steady de- 
parture from equilibrium. Simultaneously, collisions between the gas molecules 
themselves will likewise operate continuously to offset this departure and will tend to 
restore equilibrium. The actual departure of the 'steady-state distribution from equi- 
librium depends upon the magnitudes of these offsetting effects. A t  equilibrium, the 
effect of collisions is to preserve the equilibrium; therefore, any modeling of the col- 
lision term should, by definition, give rise to a zero value for the equilibrium condi- 
tion. The Krook tern does this. In addition, it conserves momentum and energy. 

Comparison of the Krook approximation and of the full collision term suggests that the 
approximation was obtained by an intuitive estimate of the effects of the integrations 
required in the full collision term. 
with the more sophisticated reasoning of Bogoluibov and others. Their reasoning is that 
the relaxation towards equilibrium occurs on several time scales. One of the longer 
epochs of the temporal evolution of the gas is the so-called hydrodynamical time scale. 
Such effects occur in general over a time period corresponding to an average collision 
time. In this sense, the Krook model is  a single relaxation type of model; in particular, 
the Krook form causes the distribution to relax to a local equilibrium on the hydro- 
dynamical time scale. 
lems. 

Actually, the Krook model is reasonably consistent 

This suggests one reason why the model works for fluid prob- 

It is clear nonetheless that the justification for replacing the correct collision term by 
the Krook form is f a r  from rigorous. In an attempt to bridge the analytical gap be- 
tween the two forms Gross and Jackson have expanded the linearized form of the com- 
plete collision term in a series of the pre-collision and post-collision velocities. 
Using a finite number of terms, they show an equivalence to the Krook form. 

In summary, the primary usefulness of the Krook form resides in its simplified form, 
which allows analytic investigation. Its practical application, although quite limited, 
is used in this report primarily to establish trends as  the flow fields approach the 
free -flow regime. 

Appendix I presents the details of calculations using the linearized form of the Krook 
equation. The theory leading to the specific equation solved in this section was de- 
veloped by H. Grad(10) and applied by M. Rose(11) to the problem of transitional drag 
on the sphere. Rose used the method of Fourier transform suggested by Grad to 
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obtain a first-order solution to the basic equation. This method is quite rigorous mathe- 
matically. However, the basic equation (Krook equation with source term) is quite 
approximative and so the necessity for  formal mathematical rigor is somewhat less 
stringent. As this method transforms the problem into the Fourier plane, it becomes 
difficult to follow what is happening to the physics. A s  a result, this method was 
dropped and a simpler method was used. The method used in Appendix I is a takeoff 
from a traditional technique in which a coordinate transformation is effected to make 
the integration of the differential equation proceed along a particle trajectory. The 

obvious physical consequences; therefore, the propriety of what such mathematical 
operations a re  doing can be evaluated immediately. 

I arithmetic operations and approximations employed using this procedure have fairly 
1 

In addition, with respect to evaluation of the source function, a more realistic rep- 
resentation than that proposed by Rose has  been developed. 
Rose gives rise to  a nulling of the effects of the zero-order perturbation (free molecule 
flow) for certain of the moments in a direction at 90 degrees to a free-stream flow 
direction. 
order perturbation for the appropriate moments for the same direction. 
to be expected on simple physical grounds. 

The solution put forth by 

The evaluation of the source function proposed here predicts a finite zero- 
This effect is 

The solution to the perturbation analysis given here, not only provides a somewhat 
simpler physical picture, but, in addition, accounts for effects that are absent in 
previously published work. The method can be extended to mixtures consisting of 
an arbitrary niunber of gases in a straightforward though extremely tedious way. 
Because the primary purpose of the perturbation calculations was only to provide 
subsidiary information to the main effort contained in the Monte Carlo procedure, 
it was  felt that the magnitude of the effort required to extend the perturbation pro- 
cedure to binary mixtures was not justified for  the value of the results. Thus, all 
calculations were limited to single-specie flow. 

The details of the analysis are presented in Appendix I. 
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SECTION V 

DISCUSSION OF RESULTS 

A. MONTE CARLO PROCEDURE I 

Two programs were developed and checked. Program No. I, for flow around 
an infinite cylinder with axis transverse to the flow direction, was used as a test bed 
for the changes necessitated by the binary mixture of gases. The debugging and test- 
ing to obtain confidence in the validity of the results with respect to the modeled 
physical problem were performed on this program. The details of the debugging pro- 
cedure a r e  given in Appendix I. Because of the degree of confidence in the program 
and the relatively short computing running times necessary (about 10 to 15 minutes 
per case), the cylinder program was also used for an exploratory investigation of the 
trends in the total number flux at the stagnation point with variation of the various 
parameters. To examine these trends the program was run for 12 cases (12 specific 
sets of parameters). 

Program No. 2 for flow about a sphere has also been debugged and tested for self- 
consistency to obtain reasonable confidence in its validity. Because of the lower 
degree of familiarity with possible difficulties in this program, and the much longer 
computing times for accuracy similar to that obtained in Program No. 1 (about 20 to 
30 minutes per case), only 3 cases a r e  available for the sphere. 

Twelve production runs of Program No. 1 were made in order to test both the range 
of applicability of the program and to explore the trends with variation of the basic 
parameters of the problem. 
non-dimensional parameters of the problem: Knudsen number, mass ratio, and 
number density ratio of the two gases in the free stream. The values of parameters 
were chosen to give the best possible definition of trends in the results, over the 
widest range possible. The computer outputs contain a large amount of information 
on the macroscopic properties of the gases in the flow field, as well as fluxes of 
mass,  momentum, and energy to the surface. It was decided that for the purpose at 
hand a useful quantity to present is the number flux to the surface. Summaries of 
information on the variation of total number flux, and relative flux of the two species 
a re  contained in Figures 2 through 5 and Tables 1 through 6. The curves in the figures 
are only illustrative of the trends; in general, they are drawn through only three cal- 
culated points, which are shown in the various figures. The value of the standard 
deviation is given with each point. 

The parameters selected were the three most important 
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TABLE 1. NUMBER FLUX DENSITY WITH VARIATION 
OF AZIMUTH ANGLE 

Conditions : 

Transverse cylinder flow 

Free-stream Mach No. uo = 10.0 

Cylinder temp. /gas temp. = 1.00 

Free-stream no. density ratio NB/NA = 1.00 

Mass ratio MB/MA = 0.100 

Knudsen No. = 1.000 

Standard deviation E is equal to 0.05316 for  mixture number flux at 8 = 0. 

Azimuthal 

(degrees) 
Angle 8 

0.0 ' 

10.0 

20.0 

30.0 

40.0 

50.0 

60.0 

70.0 

80.0 

90.0 

100.0 

Mixture 
~~ 

1.6561 

1.6195 

1.4991 

1.3518 

1.1734 

0.9110 

0.6951 

0.4747 

0.3025 

0.1785 

0.1071 

Radial Number F1& 

Heavy Gas 

1.0261 

0.9565 

0.8834 

0.7513 

0.6773 

0.4801 

0.3864 

0.2409 

0.1624 

0.0866 

0.0455 

*Normalized with respect to free-stream number flux. 

Light Gas 

0.6300 

0.6630 

0.6157 

0.6005 

0.4961 

0.4310 

0.3087 

0.2338 

0.1401 

0.0919 

0.0616 

26 



TABLE 2. NUMBER FLUX DENSITY WITH VARIATION 
O F  AZIMUTH ANGLE 

~ ~~~~ 

Conditions: 

Transverse cylinder flow 

Free-stream Mach No. uo = 10.00 

Cylinder temp. /gas temp. = 1.00 

Free-stream no. density ratio NB/Na = 10.00 

M a s s  ratio MB/MA = 0.100 

Knudsen No. = 1.000 

Standard deviation E is equal to 0.05252 fo r  mixture number flux at 8 = 0. 

Azimuthal 
Angle 8 

(degrees) 

0.0 

10.0 

20.0 

30.0 

40.0 

50.0 

60.0 

70.0 

80.0 

90.0 

100.0 

Mixture 

1.5078 

1.5407 

1.6056 

1.2852 

1.2127 

0.9333 

0.6721 

0.4734 

0.3363 

0.1934 

0.0899 

Radial Number F l d  

Heavy Gas 

0.2489 

0.2234 

0.2104 

0.1772 

0.1582 

0.1124 

0.0832 

0.0467 

0.0248 

0.0084 

0.0023 

*Normalized with respect to free-stream number flux. 

Light Gas 

1.2589 

1.3174 

1.3952 

1.1081 

1.0545 

0.8209 

0.5889 

0.4267 

0.3115 

0.1849 

0.0876 



TABLE 3. NUMBER FLUX DENSITY WITH VARIATION 
OF AZIMUTH ANGLE 

Conditions: 

Transverse cylinder flow 

Free-stream Mach No. uo = 10.0 

Cylinder temp. /gas temp. = 1.00 

Free-stream no. density ratio NB/NA = 10.00 

Mass ratio MB/MA = 10.000 

Knudsen No. = 1.000 

Standard deviation E is equal to 0.02875 for mixture number flux at 8 = 0. 

Azimuthal 
Angle 0 

(degrees) 
~~~~ ~~ ~ 

0.0 

10.0 

20.0 

30.0 

40.0 

50.0 

60.0 

70.0 

80.0 

90.0 

100.0 

Mixture 

1.9368 

1.7255 

1.8000 

1.4708 

1.3185 

1.0336 

0.7915 

0.4551 

0.3201 

0.1772 

0.1084 

Radial Number FlwP 

Heavy Gas 

1.8170 

1.5964 

1.6791 

1.3644 

1.2265 

0.9604 

0.7317 

0.4105 

0.2904 

0.1590 

0.0941 

*Normalized with respect to free-stream number flux. 

Li&t Gas 

0.1197 

0.1291 

0.1209 

0.1064 

0.0920 

0.0732 

0.0599 

0.0446 

0.0297 

0.0182 

0.0143 
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TABLE 4. NUMBER FLUX DENSITY WITH VARIATION 
OF AZIMUTH ANGLE 

Conditions: 

Transverse cylinder flow 

Free-stream Mach No. uo = 10.0 

Cylinder temp. /gas temp. = 1.00 

Free-stream no. density ratio NB/NA = 10.00 

Mass  ratio MB/MA = 3.000 

Knudsen No. = 1.000 

Standard deviation E is equal to 0.04015 for mixture number flux at e = 0. 

Azimuthal 
Angle 8 

(degrees) 

0.0 

10.0 

20.0 

30.0 

40.0 

50,O 

60-0 

70.0 

80.0 

90.0 

100.0 

Mixture 

1.8323 

1.7113 

1.6537 

1.5420 

1.4113 

1.1199 

0.7685 

0.5214 

0.3198 

0.1879 

0.0995 

Radial Number Flux* 

Heavy Gas 

1.7035 

1.5704 

1.5283 

1.4244 

1.3060 

1.0286 

0.7090 

0.4737 

0.2920 

0.1703 

0.0876 

Light Gas 

0.1288 

0.1408 

0.1254 

0.1176 

0.1053 

0.0913 

0.0595 

0.0477 

0.0277 

0.0175 

0.0118 

*Normalized with respect to free-stream number flux. 
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TABLE 5. NUMBER FLUX DENSITY WITH VARIATION 
O F  AZIMUTH ANGLE 

Conditions : 

Transverse cylinder flow 

Free-stream Mach No. uo = 10.0 

Cylinder temp./gas temp. = 1.00 

Free-stream no. density ratio NB/NA = 10.00 

Mass ratio MB/MA = 0.333 

Knudsen No. = 1.000 

Standard deviation E is equal to 0.03544 for mixture number flux at  8 = 0. 

Azimuthal 
Angle 8 

(degrees) 

0 .0  

10.0 

20.0 

30.0 

40.0 

50.0 

60.0 

70.0 

80.0 

90.0 

100.0 

Mixture 

1.9530 

1.7327 

1.7234 

1.4613 

1.2455 

0.9697 

0.8319 

0.4890 

0.3373 

0.1627 

0.1274 

Radial Number F l d  

Heavy G a s  

0.2268 

0.2125 

0.2081 

0.1585 

0.1309 

0.1082 

0.0824 

0.0477 

0.0258 

0.0102 

0.0041 

*Normalized with respect to free-stream number flux. 

Light G a s  

1.7262 

1.5201 

1.5153 

1.3027 

1.1146 

0.8615 

0.7495 

0.4413 

0.3115 

0.1525 

0.1233 
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TABLE 6. NUMBER FLUX DENSITY WITH VARIATION 
O F  AZIMUTH ANGLE 

Conditions: 

Transverse cylinder flow 

Free-steam Mach No. uo = 10.0 

Cylinder temp./gas temp. = 1.00 

Free-stream no. density ratio N /N  = 1.00 B A  
Mass  ratio MB/MA = 3.00 

Knudsen No. = 1.000 

Standard deviation E is equal to 0.05357 for mixture number flux at 0 = 0. 

Azimuthal 
Angle 8 

(degrees) 

0 . 0  

10.0 

20.0 

30.0 

40.0 

50.0 

60.0 

70.0 

80.0 

90.0 

100.0 

Mixture 

1.7721 

1.6954 

1.6615 

1.4937 

1.2626 

1.0145 

0.7424 

0.5050 

0.3649 

0.1901 

0.1133 

Radial Number Fl& 

Heavy Gas  

1.0440 

0.9191 

0.9191 

0.7977 

0.6567 

0.5497 

0.4265 

0.2534 

0.1615 

0.0955 

0.0393 

Light Gas 

0.7281 

0.7763 

0.7424 

0.6960 

0.6059 

0.4649 

0.3159 

0.2516 

0.2034 

0.0946 

0.0741 

*Normalized with respect to free-stream number flux. 
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Figures 2 and 3 present the variation in  total number flux, and the ratio of the heavy to 
light specie flux at the stagnation point, with change of Knudsen number. The speed 
ratio is 10, the body temperature is the same as free-stream temperature and mass 
ratio is 0.1 in both cases. 
specie in the free stream; Figure 3 presents results for a 10-to-1 ratio of light to 
heavyfree-stream gas abundance. 
mately the same in both cases. 
number. The relative abundance of the heavy gas is greater at the stagnation point 
than in the free stream; it also increases with decreasing Knudsen number. In the 

of the heavy gas is more pronounced, especially at the lower Knudsen numbers. 

Figure 2 presents results for equal concentrations of both 

The trends and orders of magnitude a re  approxi- 
The total flux increases with a decrease in Knudsen 

second case (Figure 3), where the light-gas concentration is larger,  the overabundance 1 

Figures 4 and 5 summarize the variation of the stagnation point fluxes with mass ratio 
and concentration ratio in the free stream at a fixed Knudsen number of unity. Figure 
4 presents the total flux and the ratio of the flux of specie B to that of specie A as a 
function of the mass ratio of specie B to specie A. (Note: As  mass ratio goes through 
1.0 from below, specie B changes from being the light to being the heavy gas.) At this 
Knudsen number of 1.0 and a 10-to-1 relative concentration in the free stream, the 
relative concentration at the stagnation point varies from about 5 to 15 as the mass 
ratio varies from 0.1 to 10. Figure 5 shows the variation of the fluxes at the stagna- 
tion point versus the ratio of fluxes in the free stream, at a Knudsen number of 1.0 
and a mass ratio of 10. Note that the heavy specie is always overabundant compared 
to the free stream, the overabundance varying from about 95 percent when NB/NA = 
0.1 to about 50,percent when NB/NA = 10. This would imply that, unless properly 
corrected, measurements on the vehicle would tend to overestimate the heavy-particle 
concentrations in the atmosphere. 

In addition to the summaries of the fluxes at the stagnation point, the distribution of 
flux versus angle on the cylinder is given in Tables 1 through 6. Tables 7 through 9 
give corresponding information for the sphere. Table 10 gives the value of stagnation 
point number flux density of the mixture for additional sets of values of the main 
parameters for the cylinder. Some care should be exercised in interpreting the data 
on angular distribution, a s  the accuracy depends upon computing time and azimuthal 
angle; it becomes quite low as the angle approaches 90 degrees. The trends in both 
absolute and relative abundances a re  expected to be correct. 
variation of the total flux given in Table 1 normalized to the stagnation-point value. 
In addition, the variation in the free molecular (Kn ~ oe) and continuum (Kn 
is shown. Although no absolute certainty of the validity of the present results can be 
obtained from this comparison, the fact that the angular distribution of the flux at a 
Knudsen number of 1.0, obtained in the present work, lies between the two limiting 
cases is very encouraging evidence of the basic validity of the program. Finally, 
Table 11 shows a very interesting two-gas effect. The flux is a maximum not at the 
stagnation point but at an angle in the vicinity of 20 degrees. As expected, the total 
pressure is a maximum at the stagnation point. The fframfl effect of the heavier 

Figure 6 shows the 

0) limits 
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TABLE 7. NUMBER FLUX DENSITY WITH VARIATION 
OF AZIMUTH ANGLE 

Azimuthal 
Angle 8 

(degrees) 

0.0 

20.0 

40.0 

6 0 . 0  

Conditions: 

Mixture 

1.1185 

1.0961 

0.8370 

0.5645 

Sphere flow 

Free-stream Mach No. uo = 10.0 

Sphere temp. /gas temp. = 1.00 

Free-stream no. density ratio N / N  = 10.00 

Mass ratio M /M = 7.00 
B A  

Knudsen No. = 3.00 

B A  

80.0 

100.0 

0.2066 

0.0241 

I 

Radial Number Flux? 

Heavy G a s  

0.0934 

0.0899 

0.0663 

0.0439 

0.0188 

0.0034 

Light Gas 

1.0251 

1.0062 

0.7707 

0.5206 

0.1878 

0.0207 

*Normalized with respect to free-stream number flux. 
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TABLE 8. NUMBER FLUX DENSITY WITH VARIATION 
O F  AZIMUTH ANGLE 

Conditions: 

Sphere flow 

Free-stream Mach No. uo = 10.0 

Sphere temp./gas temp. = 1.00 

Free-stream no. density ratio NB/NA = 1.00  

Mass ratio MB/MA = 7.00 

Knudsen No. = 3.00 

Azimuthal 
Angle 8 

(degrees) 

0.0 

20.0 

40.0 

60.0 

80.0 

100.0 

Mixture 

1.0309 

0.9912 

0.7976 

0.5305 

0.2001 

0.0242 

Radial Number Fl& 

Heavy G a s  

0.5004 

0.4485 

0.3905 

0.2462 

0.0987 

0.0156 

Light G a s  

0.5304 

0.5428 

0.4071 

0.2843 

0.1014 

0.0086 

*Normalized with respect to free-stream number flux. 
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TABLE 9. NUMBER FLUX DENSITY WITH VARIATION 
OF AZIMUTH ANGLE 

~~ 

Conditions: 

Sphere flow 

Free-stream Mach No. uo = 5.00 

Sphere temp. /gas temp. = 11.00 

Free-stream no. density ratio NB/NA = 1.00 

Mass ratio MB/MA = 1.001 

Knudsen No. = 3.00 

Azimuthal 
Angle 8 
(degrees) 

~~ 

0.0 

20.0 

40 .0  

60.0 

80.0 

100.0 

Mixture  

1.0314 

0.7473 

0.6783 

0.3819 

0.1679 

0.0153 

Radial Number Flux* 

Heavy Gas 

0.4584 

0.4103 

0.3158 

0.2025 

0.0916 

0.0051 

*Normalized with respect to free-stream number flux. 

Light Gas 

0.5730 

0.3370 

0.3625 

0.1794 

0.0763 

0.0102 
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TABLE 10. STAGNATION-POINT MIXTURE NUMBER FLUX FOR 
ADDITIONAL INTERESTING SETS OF PARAMETERS 
INVOLVING THE INFINITE CYLINDER 

Total 
Stagnation 
Point No. 

Flux 

0. 7689 

0.8718 

1.7721 

1.9530 

Knudsen 
No. 

0.300 

0 . 3 0 0  

1.000 

1.000 

MB’M~ 

1.000 

0.100 

3.000 

0.333 

NB’NA 

5.000 

1.000 

1.000 

10.000 

TR 

11.000 

11.000 

1 .000  

1 .000  

uO 

5.000 

5.000 

10.000 

10.000 

TABLE 11. VARIATION OF LIGHT-GAS NUMBER FLUX 
WITH AZIMUTH ANGLE ( Reference Table 2.  

Light G a s  
Number Flux 

1.00 

1.11 

0.84 

0.47 

0.15 

Standard 
Deviation 

Based on Normal 
Distribution 

*O. 007 

*O. 034 

*O. 039 

* O .  053 

* O .  094 
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molecules is apparently "pushing" the lighter molecules off to one side of the stagna- 
tion point. Larger angular excursions due to particle collisions between unlike particles 
is much more pronounced for  the lighter particles than for the heavier particles. 

B. PERTURBATION PROCEDURE 

The plots shown in Figures 7 through 9 a re  results calculated from theperturba- 
tion theory. The particular curves given show the inward radial number flux plotted as 
a function of Knudsen number. The values shown a r e  normalized with respect to the 
free-stream flux. 

The domain of validity of calculations based on the perturbation theory can be given in 
a semi-quantitative way by the expression 1 << r/a < L/a, where a is typical vehicle 
dimension, L is the mean free path, and r is the distance from the body to the observa- 
tion point. The expression simply indicates the region of space in the general vicinity 
of the vehicle for  which valid calculations can be performed. (Thus, the ratio of the 
distance between the point of observation and the surface of the vehicle to a typical 
vehicle dimension must be considerably greater than 1.0. In addition, the local value 
of the mean free path and vehicle size must be such that their ratio, the Knudsen num- 
ber, is in turn much greater than r/a. ) Though the guide to the domain of validity is 
not very precise, a reasonable partial check as to when the condition is being violated 
can be had by examining the results of the calculations. 
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Since the theory being discussed is a perturbation theory, the results of the calcula- 
tions must give values that are reasonably small fractions of the free-stream values 
of the various quantities. This obviously does not provide a positive criterion of cor- 
rectness; however, the contrary generally indicates incorrectness. A factor of 10 to 
15 percent is usually regarded as a reasonable upper limit for calculated values using 
perturbation theory. 

The curves in Figures 7 through 9 were evaluated for (r/a) = 25.0. The requirement 
for (r/a) >> 1 was imposed in order to avoid the geometric complexities inherent in 
the problem when distances away from the surface are on the order of a typical body 
length. 

Although the actual values of the important parameters at the body surface such as 
number flux are not directly available from the perturbation calculation, they can be 
estimated on the basis of a simple model. If it is assumed that the molecules move 
without collisions from the points where the calculation is carried out to the body sur- 
face, the results of the perturbation calculation can be considered as indicative of the 
number flux at the body surface as well. On th is  basis, it is possible to compare the 
results of the Monte Carlo procedure with those of the perturbation technique. 

It should be noted that the Monte Carlo calculations can give significant results only 
when the deviation from the free molecular value is greater than the standard devia- 
tion associated with the finite sample and time used for the calculation. The pertur- 
bation results, on the other hand, can only be considered valid when the perturbation 
from free molecular flow is small. Although a point by point comparison was there- 
fore not possible, a comparison of the trends and the possibility of smooth transition 
from one to the other solution has been investigated. 

Figure 10 shows the number density flux at a stagnation point on a cylinder normalized 
by the free molecular value, as a function of Knudsen number. The crosses indicate 
the Monte Carlo results , with the associated bars representing the standard deviation. 
For Knudsen numbers above 50, the perturbation results are presented in  terms of a 
solid line with a cross-hatched area around it representing the estimated order of 
magnitude of the e r ro r  arising from the higher order terms in the perturbation. Note 
that the basic trends given by both theoretical results are similar, and that at about a 
Knudsen number of 50 the two results lie within each other's e r r o r  estimates. The 
dashed curve is drawn as a possible smooth curve which lies everywhere within the 
allowed error band. Although the comparison cannot be said to be conclusive, it does 
present additional evidence supporting the veracity of the Monte Carlo technique ., 

Another feature of the perturbation results derives from the way in which the radial 
number flux density decreases with increasing Knudsen number. A s  noted above, it is 
quite reasonable to assume that, as the Knudsen number varies, the comparative values 
of the number flux at the body surface and at the point evaluated would remain reason- 
ably constant. If this is so, it suggests that the effects of transitional flow ( i.e., of 
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collisions) persist wel l  beyond an  altitude of 150 kilometers ( supposing a mean free 
path of 25 meters and a I-meter diameter sphere as the body ). This level was  pre- 
viously thought to be a reasonable boundary altitude between transitional and free mole- 
cule flow for  such a body. Such perturbation calculations for  different shapes can orient 
the use of the Monte Carlo procedure as to the largest Knudsen number that must be 
calculated, Since increasing Knudsen number increases computer running time, and 
hence computer cost, at a fairly rapid rate, this guide can result in more efficient use 
of the computer program. A t  a later stage of programming development, checks can 
be built into the Monte Carlo computer program; these checks would obviate the need 
for  using the perturbation theory. At present, however, perturbation calculations can 
help i n  the more efficient use of computer running time. 

C. AVAILABLE OUTPUTS FROM MONTE CARLO PROGRAMS 

Because the samplingof the particles in the program is considered to correspond 
to the sampling of the distribution of particles in the model problem, any property 
obtainable from the distribution function is accessible as a possible output of the pro- 
gram. of course, the more detailed the desired information, the more computer time 
must be used to obtain a specific accuracy. At present, all the printed outputs are 
confined to properties obtainable from integrals over the distribution function (moments) 
It is relatively easy to provide a more detailed structure of the distribution function 
itself as an output, but the time required to produce results with reasonable standard 
deviations increases proportionately to the resolution desired. For instance, i f  the 
distribution function of the flux of particles at the body surface was desired*, with a 
resolution of 10 divisions in the normal velocity, the computer time would be 10 times 
that required for  the total flux computation. (With present accuracy requirements, 
this would imply about two hours of computing time for the cylinder.) Thus, although 
it may be desirable in a certain limited number of selected cases to  obtain such de- 
tailed information, the production run outputs are confined to moments of the distribu- 
tion function. 

The moments selected for outputs in the present version of the program can be divided 
into three categories: overall integral quantities, surface flux distributions, and flow 
field moments. The first portion of the output consists of a presentation of the input 
parameters. Until steady flow is established, the outputs are only of diagnostic value. 
After steady flow is established, the information contains the averages over the 
sampled particles. 
be the solution. An outline of the information contained in such an output is given 
below. 

For the largest available time these averages are considered to 

*This distribution would be needed for internal flow computations at the orifice of an 
instrument, 
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The output includes numbers denoting the instantaneous numbers of molecules in the 
whole working volume. It also includes the cumulative number of collisions between 
molecules and between molecules and the surface. These numbers are primarily of 
diagnostic value. 

Another group of outputs consists of the overall integral quantities (such as the total 
flux, drag and heat transfer coefficients to the body). The normalizations are all in 
terms of the free-stream values. The number flux is normalized by the free-stream 
number flux per unit area times the projected body area. The drag is normalized by 
one-half the momentum flux in the conventional way, and the heat flux is normalized 
by the free-stream energy flux. 

1' 

A set of data is provided to give the flux per unit area on segments of the surface. 
(For a cylinder, the segments are strips centered on the angular position, while for 
the sphere the segments are annular regions similarly centered. ) Also given is the 
total number of molecules that have struck the surface up to that time. 
serves as a measure of the sample size on which the results a r e  based. Additional 
data given for each unit area are the number flux, skin friction or  tangential momen- 
tum flux, pressure or  normal momentum flux, and heat transfer of energy flux. These 
values are normalized by the corresponding free-stream values. All the results are 
given for the mixture as a whole and for the light and heavy gas separately. This set 
of data is probably most relevant for the present purposes of the program, and the 
only information used in the summaries of the results. 

This value 

Flow field information is included as an output. It provides conventional moments 
such as number density, mean velocities, and temperature, within each cell. All 
quantities are, as usual, normalized by their free-stream values. The information 
includes the cell number and the X and Y coordinates of the center of that particular 
cell. The origin of coordinates is at the center of the cylinder o r  sphere: X is always 
positive in the direction of the flow, and Y is perpendicular to it. The cumulative 
number of particles that have resided in the cell is also given. The averaging is based 
on this number and may be used to estimate the expected standard deviation of the 
results. Additional information provided is number density, X velocity, Y velocity, 
temperature, and the ratio of the number density of B molecules to that of A molecules. 
The mean thermal energy per particle, normalized by the free-stream value, is given 
fo r  the X, Y, and Zdirections, respectively. These results are included in order to 
provide a rough measure of the local non-equilibrium of the distribution functions, 
since at equilibrium all three values should be the same. The instantaneous popula- 
tion of each cell is also included for diagnostic purposes. 

I 
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SECTION VI 

CONCLUSIONS 

v 
The primary objective of the study was to provide a means of determining the relations 
between (1) state variables measured at an instrument on a rapidly moving vehicle, 
and (2) the corresponding values of the state variables in the free-stream (ambient 
atmosphere) and in the transition flow regime. This objective has been achieved. 

The construction of a working "Monte Carlo" program for the sphere and cylinder has 
demonstrated the feasibility of the present approach and the accessibility of the transi- 
tion region to detailed calculations. However, if the calculations are to have complete 
quantitative relevance to the data interpretation problem, the mode will require fur- 
ther sophistication. Operational experience with the present computational program 
indicates that, at least for geometries with some symmetry, sufficient sophistication 
can be added within available computer capabilities. 

The limited information obtained on the results, both by the Monte Carlo technique 
and by the perturbation method indicate that the flow field can have a very great effect 
on data interpretation. A s  discussed in the results, there is a general tendency of the 
heavy specie to become overabundant i n  the stagnation point region. Data taken by an 
instrument placed there, if not properly interpreted, could lead to very erroneous con- 
clusions about the relative concentrations within the atmosphere. Because the absolute 
values of the fluxes differ sufficiently from their free-stream values, improper inter- 
pretation of data could also lead to e r rors  (up to factors of 2 ) in the number densities 
of the ambient atmosphere. 

The present work has demonstrated operationally that the transition regime flow field 
studies are accessible by the "Monte Carlo" method. It has also shown the importance 
of such studies in the correct interpretation of data obtained from instruments of high- 
speed vehicles. 

The prime criterion for  instrument positioning derived from the calculations is the 
size of the standard deviation. Generally, an increase in the absolute number flux 
produces a corresponding increase in the statistical accuracy. This fact suggests that 
points close to the stagnation point (when there is only one) are optimum for instrument 
positioning. However, the statistical error  in the correction factors given herein can 
be made small enough with sufficient computer time. 
that the positioning of instruments, for the bodies considered, is not too critical from 
the standpoint of error.  

Thus, the criterion suggests 
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From the point of view of composition measurement, an interesting situation has come 
to light. It has been determined that the position of greatest accuracy for the measure- 
ment of the relative abundance of two species depends upon their mass ratio. This is 
the so-called two-gas effect. Additional study will be required to determine optimum 
instrument position, but for  certain mass ratios, it is probably not the stagnation 
point. 

Er ror  as a function of position is an important, but only partial, criterion for  the 
choice of instrument position. In the final analysis, the selection of instrument 
position must involve detailed consultation between the instrument user, the instru- 
ment designer, and the vehicle designer. Nonetheless, the calculations contained 
herein provide very useful criteria for this selection and important corrections for  
the data reduction process. 
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APPENDIX I 

PERTURBATION1 PROCEDURE EMPLOYED I N  DETERMINING 
FLUID FLOW QUANTITITES 

PART A 

MAJOR ANALYSIS 

INTRODUCTION: 

The purpose of this appendix is to acquaint the interested personnel with the 
details of a perturbation solution of the kinetic equation (Krook Model) involved in the 
problems of the study. A s  its purpose is largely didactic, a number of details con- 
cerning the background of the calculations will  be dealt with at  some length. 

The particular calculation performed in this appendix is the evaluation to 2nd 
order in the peturbation, of the radial flux vector. A spherical body is assumed. 
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BACKGROUND O F  THE PROBLEM: 

Because of the  range of values of t h e  flow parameters inherent in this problem 
area, specialized techniques of solution a re  required. This problem falls into the so- 
called transitional flow region. This is a region in which the ratio of the mean f ree  
path in the free stream for collision between gas particles to a typical satellite dimen- 
sion is of the order of unity. (This ratio is called the Knudsen number; designated 
fi) . 

The transitional flow field contrasts with the free molecule flow field typical 
for satellites at higher altitudes for which the Knudsen number is very large (i.e, 
Kn >> 1). The  essential mathematical difference is that the transitional flow field 
requires the retention of the collision term in the basic kinetic equation. 

For transitional flow problems, the basic equation is the Boltzmann kinetic 
equation. For a multi-species gas*, the Boltzmann equation for the ith species is: 

b v  here : 

f .  = 
1 

t =  

V i  

r =  i 
F. = 
1 

m =  i 
- kij - 

distribution function of the ith species in velocity and configuration 
space (the superscript primes indicate post collision quantities). 

time 

instantaneous velocity of ith species 

position vector of ith species 

externally applied forces (throughout let Fi = 0)  

mass per particle of the ith species 

the encounter variable for binary collisions between particles for the 
ith and jth species. 

* I' Though not required initially, a multi-species notation will be employed for use 
in later stages of this work!' 
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The moments of interest a re  defined: 

ni = Jfi d vi = number density of the ith species 

- 1  
vi = - ni 

Jfi vi dvi = mean velocity of ith species 

- 1 

’ j j j fluid containing j distinct species 
u = - Cn-m v = mass averaged velocity in a multi species 

p =r .n ,m,  = total mass density in a multi-species fluid 
J 

j 

For a single species, 

T. = 
1 

T =  

containing j distinct species J 

- 
u = vi 

mi - !(vi - u)’fi d v i  = temperatures of ith species 3kni 

i m - Cn. -j (vj - u)’ = temperature of fluid averaged over all (2f) 
n 3 2  species j 

n =  C n j  = total number density in a multi-species (2g) 
fluid containing j distinct species j 

(vi - u) = diffusion velocity of ith species, i . e. , relative to mass 
flow. 

dv. = dvix dviy dviz (i. e. , a volume element in velocity space). 
1 

= vir dvir sine d e  d@ . 

DETAILS OF SOLUTION OF EQUATION (I): 

A s  it stands,  (I) defies solution in most cases. This is primarily because of 
the term on the right hand side (i .e. ,  the so-called collision term). A variety of pro- 
cedures have been invented to circumvent the difficulties of handling the collision term. 
The procedured invoked here is to replace the collision term by the so-called Krook 
term. Though the use of the Krook term has been the subject of some theoretical crit- 
icism, it seems to work reasonably well in flow problems. In its simplest form (i. e . ,  
fo r  a single species gas), the Krook term (really Bhatnager-Gross-Krook) is: 

v . 3 .  - fi) 
11 10 
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where : 

vii = average collision frequency of ith particle with another of the same 

f i o 

species 

= local Maxwellian distribution function of the ith species. 

Thus, (I) becomes, (for Fi = 0), in the single species case: 

The collision term in a multi-species gas mixture has a more complicated form but 
for purposes of exposition, details of the multi-species problem will be deferred. 

Equation ( 3 )  (and its multi-species generalization) represents the basic equa- 
tion to be employed for the perturbation solutions. The statement of the problem is not 
yet complete as the boundary conditions have yet to be specified. This is the satellite 
itself. Its surface represents a boundary; in fact "&e1' boundary. This boundary 
condition controls, locally, the value of the distribution function. To underscore its 
importance, it is the values of the moments in (2) evaluated in the vicinity of the body 
which a re  the critical parameters desired. 

It is well known that a boundary condition can be represented as a source term 
or in engineering terminology, a forcing function. Equation ( 3 )  will  then be rewritten 
to include the boundary condition in the form of a source term: 

- af i  
v. - - vii(fio - fi) + H (v, r) 

1 a r i  (4) 

where H (v,  r) is the source term and the explicit time dependence has been dropped 
since the distribution is steady state. 

Equation (4) will be solved under such conditions that an explicit expression 
for H will be given. To begin with, if on any arbitrarily small section of the boundary 
surface, the same velocity distribution emanates as from any other section, then H 
can be written as a product of a function of velocity and a function of position. (Vari-  
ations on this condition could be exploited for experimental purposes). Secondly, the 
range of Knudsen number, as stated above, is given as the ratio of a free stream mean 
free path (L) to typical body dimensions (see Figure I-i ) It will be bounded on the lower 
side by Kn = L/a = 20. This will permit of a distance D such that: a << D << L. 

Defining a distance D (scale length of observation) will permit a bounding 
radius inside of which free molecular flow is substantially guaranteed. Free  molecular 
flow occurs, strictly speaking, in the limit of infinite mean free path. Practically 
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speaking, free molecular flow can be said to occur in a region in which the effects of 
collisions are so small as to provide a negligible effect on the dynamics of a typical 
particle. That is to say, collisions occur, but so rarely that the  collision term can be 
neglected in the governing equations. 

Figure I - i .  Relationship of a, D, and L 

In Figure 1-1, a = characteristic body size, 
D = the radius of the scale of observation, 
L = the free stream mean free path. 

U s e  will be made of the distance D later, but first development of (4) must proceed. 
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LINEARIZATION OF EQUATION (4): 

Two basic modifications have yet to be made in Equation (4) before proceeding 
with solution: (l)? the source term H(v, r) will be specified; (2) the equation itself will 
be linearized. A s  indicated above, under certain circumstances (and these will be 
invoked here), it is appropriate to write H(v, r) in the form of a product of two functions, 
one involving only velocities and one the configurational coordinates. Here, the 
boundary conditions to be imposed come into play in the way H(v, r) is to be written. 

The actual physical condition at the boundary, of the interplay of impinging gas 
particle and the boundary surface, is a complicated dynamical problem in its own right. 
However, the detailed description of the dynamics and of the present level of understanding 
in t h i s  area, though important to the ultimate objective, is itself, not precisely relevent 
to present purposes. Phenomenological constants called " accommodation coefficients'' 
will  relate the properties of the input and output fluxes of the bounding surfaces. In 
particular, it will suffice for present purposes to assume a completely diffusive surface. 
For such a condition, regardless of the velocity distribution of the input flux, the effu- 
sive flux velocity distribution will be a 1/2 Maxwellian uniform over the body and follow- 
ing a simple cosine law (angle with respect to the local normal) for spatial flux distribu- 
tion. 
cient equal to unity. ) 

(The above description is equivalent to setting the so-called accommodation coeffi- 

On the above assumptions, one can wri te :  

H ( v , r )  = a(v)G(r ) .  

G(r) = the bounding surface of the satellite. a(v) is the efflux velocity distribution 
function. On a scale of observation at a distance from the satellite of order a (see 
Figure 1-1 ) ,all the geometric complexity of shape of the satellite is manifest. For 
D>> a, the details of the shape became less important in te rms  of the flux emanating 
from the surface and crossing say a surface of a unit volume a distance D from the 
satellite. In the limit, as D gets infinite, G effectively shrinks to a point. 

This can be seen more clearly by considering the diagram shown in Figure 1-2. 

The component P' of the differential element of flux at a point P located at a 
distance D from the origin arising from an element of surface ds' located at M, is 
dFp where:  

where Mf(8 ' )  is the flux per  unit area emanating from the surface located at an angle 
0 '  and: 

ds '  = a2 s i n e '  d e '  d @' 
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I / F R E E  STREAM 

F L U X  DIRECTION 

Figure 1-2. Geometry Required to Describe the Flux to a Point P 

and 

r2 = a2 + D2 -2 aD cos(8 
n 

- e )  
e '  - - e ) .  

In the limit as  the ratio a/D approaches zero, 

a2 
r2 

dFp = Mf(8')  - sin 8 de  d<P 

and the cone defined by the solid angle np collapses into a ray. 

The geometry required to describe the  flux to a point P, reduces very consider- 
ably in complexity as P recedes to a distance D such that the ratio a/D gets very 
small. In effect, on a sphere of radius D in this approximation, the flux vector has 
only a radial component. On this basis, (i.e. , as  long as  a<<  D) one can then approxi- 
mate the physical extent of the body by a Dirac delta function. Hence, G(r )  = 6(r). 

A A 



A 

H(v , r )  = a (v i )6 i ( r )  l imdD-0.  

In the case that geometries other than a sphere a r e  involved, the radius a is 
replaced by some characteristic length. Thus, for a cylinder, the cylinder diameter 
or  length, whichever is the more appropriate, would replace the sphere diameter. 
This geometric approximation gives rise to the amended version of equation (4). 

a f i  
a r  vi - V i i ( f i o  - f i )  + a i (v i )6  (ri) (5) 

It is the linearized form of (5) that is the basic working equation for the pertur- 
bation procedure. The linearization is straightforward. First, define the perturbation 
variables. 

Let: 

f .  = f .  (0) + gi = distribution function The subscripts io indicate 

ni -- nio 
th 1 1 

free stream values of i + n = number density - 
il species. The ii subscripts 

mi - - mio 
ui - uio 

+ mil = mass of ith particle denote the perturbed values of 
- + uil = average velocity ith species. (6) 

Ti = Tio + Til = temperature 

Pi = pi0 + Pi1 = pressure 

The local Maxwellian f io  is defined as: 

I 

k is the Boltzmann constant. 

(0) Equation (7) can be linearized in terms of the free stream maxwellian fi 

where: 
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I '  

, 

that is: 

where: C i  = V i  - Uio 

and: Ri = k/mi 

In equations (5) thru ( 8 )  a number of quantities have been introduced. It is 
actually more convenient to deal with non- dimensional quantities. 

Note the following definitions of dimensionless quantities: 

Employing equations (5) thru ( I O )  the basic working equation (single species 
form) is arrived at. 

In t e rms  of the dimensionless perturbed distribution function, Ly the various 
appropriate dimensionless moments become:* 

* The Analysis up to and including (12 )  is due to H .  GRAD "Equations of Flow in a 
Rarefied Atmosphere" : NYO-2543. 
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N 

n il  = /gidTi = (perturbed nondimensional number density) 

A 

N N  N N N  N 

Uilk + nil uiok = JvikgidVi (perturbed nondimensional number) 
flux in k-direction 

- ;J("' - - e l  >-- gidvi = (perturbed nondimensional 
th temperature of i- species) Til 

Following the usual procedure of integrating along the streamlines, examina- 
tion of (11) suggests that the integration is to be carried out along the direction 
of the vector Ti. 
tegration along the direction of the fixed vector vi. Thus, consider the following 
coordinate transformation: 

The value of gi at some arbitrary point P must come from in- 

a 
- 2 -  

ri = rio - vis where - 00 5 s 5 0 0 .  

A 
A N 

Here, rio is a fixed vector from the origin to the point of observation P a_nd vis 
is the vector from the variable source point to the point of observation. 
arbitrary but fixed vector and s is a variable scalar magnitude. Now, 

Here Vi is an 

and 

so 

o r  
N N 

So that (11) becomes: 
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where the delta tunction has been volume normalized to unity b the metrical coefficients 

ds, it becomes: 
(hi h2 h3) . Multiplying (13)  thru by the integrating factor e-' P L, and integrating over 

00 00 

A generalized lower limit has been assigned to  the integrals corresponding to 
the specific conditions (e. g. ,  boundary conditions) to be examined. 

Integrating the left hand side of (14),  one obtains: 

The integrand in  (14a) suggest an iteration procedure in  which equal orders 
in (l/Lii) are equated 

Now assumc 

order (n-1) of ci are 
mere order (n+l) of; and 

from order (n) of 6. 

N - N i -  gi - gio + - gii + H.0.T 

N i -  
Gi = Gio + -Gii + H.O.T. 

Lii 

Lii 

Expanding the exponents in the integrand in (14a), one obtains in lowest order of 
(i/Lii): 
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N 

where, aswillbeseenbelow, trio is known, as it is determinable from the free stream 
flow. It is the lowest order approximation to the number flux off the sphere per unit 
velocity interval. gio is the lowest order approximation to the perturbation of the 
distribution function and is the free molecular flow perturbation. 
transformation used to express (11) in the form (13)  shows in general that the inte- 
gration over the three independent space coordinates can be reduced to  integration over 
one independent coordinate (i. e. the characteristic direction) . Furthermore, invoking 
the geometrical approximation inherent in Fig. 1-2, it becomes possible for r > > a to 
approximate the stream lines, at least in the limit of free molecular flow, as purely 
radial lines. Thus even though the "sources" of g may be a function of 8 (physically 
this refers to the fact that the efflux from the sphere is function of e), the integration 
can be done along a radial line. 

N 

The coordinate 

For this situation (15) becomes 

dr' 

N 

Integrating the sources of gio over the source coordinates and for r' > r 

BOUNDARY CONDITIONS: 

N 

Consider next the evaluation of ai,. This is the net number flow in the free 
molecule flow approximation. In the case of a sphere, the free molecule component 
of the perturbed net flow can be seen graphically in Fig. 1-3. 
in the free molecule approximation at a point P, is the flow off the sphere (called B) 
minus the component of free stream flow (called C) which is prevented from arriving 
at P due to the presence of the sphere. The flow (called A) is not involved but is 
just the mean free stream flow direction. The flow (called C) which is a component of 
the free stream flux to P is subtracted out due to the presence of the sphere. It arises 
from those free stream particles with velocities directed toward P with magnitudes 
greater than the  mean flow velocity. This is due to the thermal distribution of velocities. 
However, except for angles very close 180' in  the hypersonic limit it is reasonable 
to  ignore the flow called C. 

The perturbed mass flow 
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Figure 1-3. Geometry for Computing the Effective Free-Molecular 
Source Strength io 

I 
N 

The function Fi for  which the function aio is the free molecular perturbation approxima- 
tion, is defined as: 

(17)  
(where dS is an element of the 
boundary surface).  

The quantity (gi) is the velocity distribution of the flux emanating from the 
boundary. Now: B 

where nf is an effective "areal" density such that nf vir is the number flux per unit 
a rea  with a normal velocity v 
perature. In the lowest order of perturbation, the effective flux from the body is: 

emanating from the body. TB is the body tem- ir 



f' where n is the lowest order approximation to n 
f (0) 

The general definition of a i  requires integration over the entire surface of the 
sphere because, as stated above, the perturbation has both a positive and negative 
contribution. But, in the hypersonic limit, only for angles very close to 180" is it 
necessary to include the "negative" contribution to the perturbation. 

It is also clear that the so called 'positive" a rea  of interest on the sphere is that 
area which is visible at the observation point P, as other parts of the sphere cannot 
contribute particles to the perturbation at P in the free-molecule approximation. (In 
this limit, collisions in space do not contribute to the perturbation. ) Additionally, not 
all areas of the sphere visible at P can supply particles because the particles originally 
derive from the free stream and the free-stream flux only contributes particles to 
that hemisphere of the surface facing the free stream. 
integration becomes that area which is simultaneously seen from both the free stream 
direction and the observation direction. In the diagram of Figure 1-4, this area is 
outlined with a dotted line. 

Thus, the actual area of 

As  can be. seen in Part C of this appendix the hypersonic limit approximation 
(&, >>1) fails at or very near 90". In addition at or very near 180" the calculation is 
also invalid, as  at 180", even in the hypersonic limit, the flow (called C) cannot be 
ignored. These shortcomings in the calculations can be remedied but only at con- 
siderable additional effort and so will be ignored for present purposes. 

In the hypersonic limit (see Part C) the term &(o) is given as 
4 h  

(20a) 
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The dependence on (7)1/2 (T-Tio/TR). the ratio of temperature of the free 
stream and the body, and on cos 8 is expected on a simple physical basis. The 
presence of cos 8 in equation (20) accounts for its presence in the integral formulation Part 
B of this appendix for the projection in a direction 8 of the simultaneously visible area. 

N 

aio, the normalized total flow off the portion of the surface seen at P per unit 
velocity interval is (see Part B) 

N 

(NOTE: aio has the units of area; the normalized delta function used above has the 
units of a reciprocal volume.) The zero order perturbation function can now be 
written explicitly for the case of a sphere: 

N 

Using the zero order i. e. gio and Equation (12) ,  t he  zero order perturbation 
number density nilo can be written: 

ni lo -= J Go dyi which can be written (22)  

The first  moment of the number flux in the radial direction is 

N N 

(where: uilor = -uio cos 8 )  
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All  the terms in the first term on the right hand side of Equation (11) have 
been determined to zero order in the perturbation. 

N N 

where the Gio is the zero order perturbation value of Gi .  
quantity g il can be evaluated. In accordance with ordering the solutions in l/Lii, g il 

Having evaluated Gio, the N 
N 

becomes 

+ 

N N N N  

where h only the first integral contributes to gil. 
ob). Eq. (29) becomes 

In general, gin=gin (Gi (n -  1 ) ,  

Integration of Equation (39) will proceed as in the case of (11) in a radial direc- 
tion but for somewhat different reasons. The term in the integral in Equation (30) is 
a part of the collis?on term (i.e., producing particles for the distribution f )  . At dis- 
tances r > > a, and greater, only a radial component of s is required as stream lines 
oriented, even at small angles with respect to a radial line, will result in the production 
of particles which miss the body by a significant distance. On the other hand a t  distances 
r small compared to D (i. e . ,  rza), all lines from a point P that land on the sphere a r e  
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valid directions of integration. In this latter regime, however, collisions are as- 
sumed to be negligible. Explicit recognition of this is observed as it is contained in 
the expansion variable; that is, the term e-s/L is expanded. It must be remembered 
that must be multiplied by (a/L) before it becomes the second approximation to zi. 
By integrating along a radial line to a point r, an estimate to order a/L of the effects 
due to collisions contributing to zi1 is obtained. It must be recognized that to order 
(a/L), a relatively poor approximation is had to the true perturbation variables for 
any r which is not much greater than a. 

The radial component of the first perturbation away from the free stream value 
of the radial component of the flux ril at the surface of the sphere is  

The calculations required in order to convert from a spherical to a cylindrical 
geometry are presented in Part  C of this appendix. 
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APPENDIX I 

PART B 

CALCULATION OF EFFECTIVE SOURCE AREA 

In connection with Figure 1-4, let A be the portion of the surface area of the sphere 
which is simultaneously visible to the free stream direction(8 = 0), and to a point P at 
an arbitrary angle 8 and at a distance from the origin r such that r > > a. A s  a result 
of r>  > a, the difference between the portion of the surface area of the sphere which 
can be seen at P and the surface area of a hemisphere is negligible and it will be ignor- 
ed. Let C be the surface area of the hemisphere which is visible to the free stream 
direction and B be the portion of the hanisphere C which can not be seen at P. Thus, 

C - B =  A, and 

C p  - B p  = A p  

where Ap is the quantity to be evaluated. 
denote the projections of A, By and C, respectively, in the direction 8 = 0. 

The subscripted values, i. e. A p ,  Bp,  Cp, 
Evidently, 

C p = n a .  2 

2 

Let :be the unit vector in the direction of OP.  

nx = sin 8 cos $I 

ny = sin 8 sin @ 

nz = cos 8 

In order to obtain Bp and hence Ap, it is necessary to obtain the expression for 
a great circle of the sphere whose plane is perpendicular to the unit vector z. 

Let Q be an arbitrary point on the great circle with coordinates: 

Qx = a s i n  O f  cos Q f  

Qy = a s in  8’ sin 

Qz = a cosOf 

A 2 - 5 -  

Since the vectors ri and Q are orthogonal, we have n 0 Q = 0 o r  

cos @ cos Q’ + sin @ s i n @ ’  + c t n 8  ctn8’ = 0 
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For computing the area Bp, the angle @ is immaterial and can be set equal to n/2, 
hence: 

ctn 8' = -tan 8 sin @ '  o r  

8' = ctn-' ( k s i n @ ' )  (34) 

where k = -tan 8. Equation (34) is the expression for the great circle desired. 

I With the expression for the great circle known, the area Bp can be expressed 
by the integral: 

?T n/2 
COS 8' sin 8' d 8' d$/ (35) 

where 8, is given by Eq. (34), i. e. , 
0' - integration, Eq. (35) becomes: 

= ctn-' (k s in  Q '1. A f t e r  carrying out the 

71 
B~ = a2 1 [ i - sin2 8, ($ ' ) I  d$' 

0 
2 

Since: 

it follows: 
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The integral in Eq. (37) can be evaluated immediately by the thereom of resi- 
dues in the complex plane:* 

Now Equation (37) also can be written as: 

The desired projection A p  is: 

rr a2 i 
\m'l A p  = C p -  B p  = 712 - - [ 1 - 2 

since k = -tan 0 .  

* The integral in Equation (37) also can be written a s  

The last integral can be found in Nouvelles Tables d' Integrals Defines, by D. de Haan. 
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P 

0 = OOR FREE STREAM 
DI RECTlON 

Dotted line parallels the line defining that portion of the surface of the sphere whose 
projection is of interest. 

Figure 1-4. Geometry for Calculation of Effective Source Area 
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APPENDIX I 

PART C 

CALCULATION OF EMITTED FLUX DENSITY 

In order to evaluate 6 io, the quantity ne must first be obtained. In order to 
obtain the expression for 

ne nf( ' j  (Part A of this Appendix) 

which is the number of molecules per unit volume residing on the surface of the 
body, ne is most appropriately expressed in terms of ni where ni is the number of the 
molecules per unit volume in the in coming flux arriving at the body. The following 
consideration is given. Let the number of molecules per  unit volume whose components 
of velocity lie in the range vi, v2, v3 to vi+ dvi, v2+ dv2, v3f dvg be given by 

dn = n f(v1, v2, vg) dvi dv2 dv3* 

Let Ie be the flux of molecules (number of molecules per unit time per unit area) 
emitted from the sphere. Employing spherical coordinates in the velocity space, we 
have 

where 

After carrying out the 0- and 4)- integrations, Eq. (39) becomes 

I, = (41) 

0 

For simplification of notation the species subscripts are dropped in this calculation. * 
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Let TB be the temperature of the body and 7 = Tio/TB where Tio is the free 
stream gas temperature. Thus 

00 

N 

Setting z = vr2, then 

00 
P 

00 
P 

Using this result, 1, (flux emitted from the sphere) can be written as  

To obtain the flux Ii (number of incoming molecules per unit time per  unit area), 
let uo be the free stream velocity relative to the body and let 8 be the angle between 
the velocity vector uo and the normal to the surface. (See diagram just below) 
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where 

and 

(vi-u0)’ = (vl+u(, cos e ) 2  + (v2+ug sin e cos 4 ) 2  + (v3+uo sine sin$ ) 2  

Substitution leads to 

The integrations involved can be simplified by introducing new variables. In 
case of the 71 - integration, let 

then 

N 
(Go COS e ~ 4 2  

(-0~- uo cos 0 )  exp {- y2} fi dy 
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where 

-a3 
J 

Hence 

-i/2~02c0s20 71 1/2- uv  COS^ 
-(2) PI = - e  

For the v2- and v3- integrations, introduce 

N -  

y = (v2+ uo sin O cos + )/Jz 
and 

N N  

z - (v3+uOsino s i n +  )/Jz 

Using these results, Ii (the incoming flux) can be written as 

o r  
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The number of molecules reflected (or emitted) is equal to the number of 
molecules incoming, i.e. T, = $. From eqs. (42) and (451, we obtain 

N 

In the hypersonic limit, i. e .  , vo becomes very large, except for 8 = n/2, Eq. (46) 
can be approximated by 

ni 
(4 7) 

( e .  g.) A t  (3 = 70' for Go = 10 the difference between (46) and the hypersonic limit (47) 
is less than 0.5%. 
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APPENDIX 

P A R T  D 

CYLINDRICAL GEOMETRY 

This section presents a short discussion of the perturbation procedure applied to 
the problem of an infinitely long cylinder whose long axis is oriented transversely to 
the free-stream flow direction. The general theory is identical to that used for the 
spherical case. Also, similar geometrical approximations are invoked. A s  in the 
spherical case, the source radius is small compared to the observer distance, which 
in turn is small compared to the average mean free path. 

There is a large degree of overlap of the present problem with the spherical 
geometry. The fundamental difference between the cylindrical geometry and the 
spherical geometry is that the cylindrical geometry gives rise to a stricter two- 
dimensional problem. In this problem the macroscopic flow variables depend on the 
r and 8 cylinder coordinates. The Z direction is along the axis of the infinite cylinder; 
no variation can occur in this direction. 

It can easily be shown that the total flux contributed to a point P some normal 
distance r from the body surface is a finite quantity when the flux arises from parti- 
cles coming from a strip on the cylinder surface of width a d 0 and infinite length. 
(The quantity a is the radius of the cylinder.) This establishes the validity of a two- 
dimensional geometry, 

The integration of the linearized kinetic equation in the free-molecule flow ap- 
proximation gives rise to the lowest-order approximation (beyond equilibrium) to the 
distribution function; namely, 

a (1 + cos 0) 

4 n r v  (e - @ ‘ ) e  - 2 0  
go = 7 

r 
(48) 

where the meanings of the various parameters are  equivalent to the spherical problem 
with the exception of the configurational coordinates. The zero-order (free -molecule) 
moments a re  straightforward integrations over the velocity coordinates. 
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The next-order approximation to the distribution function involves integration in 
configuration space. 
moments, as that for the spherical case. A s  a result of this integration, a logarithmic 
dependence upon the radial coordinate is obtained. 
is known to be due t o  the infinite extent of the cylinder. 

The integrand has the same form, in terms of the zero-order 

This result is wholly expected and 

The range of integration is, in general, over the radial coordinate from infinity 
to the radius of the observation point. A n  approximation is employed in changing the 
lower limit from infinity to nL where n is a number of order unity and L is the average 
mean free path. This approximation can be used because the contribution to the inte- 
gration from distances beyond 2 o r  3 mean free paths is negligible. In effect the radial 
dependence of the second order approximation to the distribution function is given as 
a/L lu (r /L)  for r < L. 

In the numerical evaluation of the second-order correction to the radial number 
flux vector the form is the same as given in Equation (32) of this appendix. However, 
the detailed calculations are somewhat more lengthy than for the spherical case. 
The results for the cylinder case are  presented in the main body of this report. 
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